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We show that qubits coupled sequentially to a mesoscopic static completely mixed spin bath via the Heisen-
berg interaction can become highly entangled. Straightforward protocols for the generation of multipartite
entangled Greenberger-Horne-Zeilinger �GHZ� states are presented. We show the feasibility of an experimental
realization in a quantum dot by the hyperfine interaction of an electron with the nuclear spins.
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I. INTRODUCTION

The quest to realize quantum information processing
�QIP� has motivated an impressive race to implement high-
precision preparation and manipulation of isolated two-level
quantum systems �qubits� in a wide variety of physical
settings.1 A hallmark achievement for each such approach is
the generation of quantum entanglement through controlled
interaction between two or more qubits. Since switchable
direct interactions between qubits often entail additional de-
coherence mechanisms, many QIP proposals rely on interac-
tions mediated by an additional quantum system. As a rule
this mediator �just as the qubits themselves� needs to be pre-
pared in a pure state to achieve high-fidelity quantum opera-
tions, and it may look futile to use a high-entropy mesos-
copic spin bath for this task. In contrast to these
expectations, we show here that high-fidelity entanglement
generation can be realized even if the qubits can interact only
with an arbitrarily mixed spin bath, provided that this inter-
action can be switched on and off, single-qubit unitaries are
available, and the bath has slow internal dynamics. This is
motivated by and will be illustrated through the example of
electron spin qubits in quantum dots �QDs�,2 where the en-
semble of lattice nuclear spins represents a strongly coupled
but slowly evolving spin bath.

Nuclear spins in quantum dots have received much
theoretical3–8 and experimental9,10 attention in the QIP con-
text as the main source of electron spin decoherence through
the strong hyperfine coupling. It has also been noted that
their slow internal dynamics and long �expected� decoher-
ence time11 make the ensemble of nuclear spins useful as a
quantum memory12 or for quantum computation.13 These ap-
plications, however, require careful yet unachieved prepara-
tion of the nuclear system. What we show here is that the
unprepared highly or even maximally mixed �nuclear� sys-
tem is able to mediate coherent interaction between electrons
and thereby allows the generation of highly entangled states
of many �electron spin� qubits without any electron-electron
interaction.

We consider a QD in the single-electron regime14 and
assume the availability of single-electron state preparation
and measurement as well as the controlled shuttling of pre-
pared electrons into and out of the QD, all of which have
been demonstrated experimentally.15 Additionally required is
control of the detuning �e.g., by a magnetic or electric field�,
which switches the hyperfine �HF� interaction between reso-

nant and off-resonant regimes. We first show how sequential
interaction of three electrons with the nuclear bath can gen-
erate a maximally entangled pair of electron spins. More
generally, the class of states that can be generated via the
spin bath is characterized in terms of matrix product states.
Finally we show that imperfect electron spin operations, in-
homogeneous couplings between electron and nuclei, and
modifications to the ideal static spin bath still allow for the
scheme to be realized. In situations where the spin-orbit cou-
pling is large, our scheme can be an interesting alternative to
the standard exchange based setups, because it does not
involve occupation of any higher orbital levels.16,17

II. ENTANGLEMENT GENERATION

We consider each electron coupled via the uniform
Heisenberg interaction to the bath of N nuclear spins and to
an external magnetic field Bz ��=1�,

H =
A

2N
�I+S− + S+I−� +

A

N
IzSz + g��BBzS

z. �1�

S is the spin operator for the electron and I�=�iIi
� are the

three components of the collective nuclear spin operators
��= � ,z and �I+ , Iz�=−I+ and �I+ , I−�=2Iz�. g� is the electron
g factor and �B is the Bohr magneton. We consider spin-1/2
nuclei and neglect bath dynamics, the bath spins’ Zeeman
energies, and inhomogeneities in the Heisenberg couplings
for now. We discuss the validity of these approximations
toward the end of this paper.

We use the Dicke basis ��I ,m ,��	, where I�I+1� is the
eigenvalue of the collective angular momentum operator I2,
the eigenvalue of Iz is given by m, and � is the permutation
quantum number.18 The initial state of the spin bath in the
following is the identity

�bath =
1

2N �
I,m,�

�I,m,��
I,m,�� = 12N/2N. �2�

In the following we omit �, which does not enter in the
dynamics. This situation of a completely unknown bath state
is, e.g., a suitable description for GaAs QDs even at tempera-
tures as low as 100 mK.9,10 In the following, time will be
given in units of N /A. Even though the idea we present is
applicable to any �quasi�static bath, we perform all estima-
tions for GaAs, i.e., in particular A−1�40 ps.

The first electron spin �which we also refer to as ancilla
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electron� is prepared in the state �↑ � and interacts resonantly
for a time t1 with the nuclear spin bath,

U�I,m,↑� = cIm�t1��I,m,↑� + sIm�t1��I,m + 1,↓� , �3�

with U=e−iHt1 and

cIm�t1� = cos� �1 + 2I�t1

4
 − i

1 + 2m

1 + 2I
sin� �1 + 2I�t1

4
 ,

sIm�t1� =
− 2i��I − m��1 + I + m�

1 + 2I
sin� �1 + 2I�t1

4
 .

Then the next electron spin, with initial state �+ �
=1 /�2��↑ �+ �↓ ��, interacts for a time t2 off-resonantly �e.g.,
in the presence of a large Bz� with the spin bath. For
g��BBz�A /�N, the flip-flop part of the Hamiltonian can be
approximately neglected,19 yielding

V�t2��m,+� =
1
�2

�m��e−i�B̃+m�t2/2�↑� + e+i�B̃+m�t2/2�↓�� ,

where B̃=g��BBzN /A and the index I has been omitted for
brevity. Remarkably, by choosing the interaction time t2=�,
the state of the electron is transformed to �−i�m��−�m�, i.e., for
even m=2k to �−1�k�+ � and for odd m=2k+1 to −i�−1�k�−�.
For convenience we assume that B̃t2 /2=2��, ��N, which
is adjusted by the “free” parameter of the large field. With
the third electron, also in �+ � initially and with the same
interaction, the state becomes

�cIm�t1��I,m,↑��� �� � sIm�t1��I,m + 1,↓��� �� , �4�

with upper �lower� signs referring to even �odd� m.
In the final step, the ancilla electron interacts resonantly

with the nuclei again �cf. Eq. �3��, giving

�cIm�t1��� ���cIm�t1��m,↑� + sIm�t1��m + 1,↓�� ,

�sIm�t1��� ���cIm
� �t1��m + 1,↓� + sIm�t1��m,↑�� �5�

for even/odd m, and is eventually measured projectively in
the z basis. If the measurement outcome is ↓, it is clear from
Eq. �5� that in each subspace the second and third electrons
are in the maximally entangled state

�m + 1���+ +� − e�i	m�− − ��/�2, �6�

where the phase 	m=2 arg�cIm� depends on the quantum
numbers I and m, leading to a washing out of the entangle-
ment when the average over the different subspaces is taken.
However, for short times ��2I+1�t1
1 for typical values of
I��N�, this phase tends to zero and near ideal entanglement
is created, albeit at the price of a lower success probability,
see Fig. 1.

III. MULTIPARTITE ENTANGLEMENT

The presented scheme generalizes in a straightforward
manner to multipartite entanglement creation. Following the
same protocol using n electrons with arbitrary initial states
��1� , . . . , ��n�, the final state becomes

��n� =
1
�2

�1 + ��− 1�m+1iz��n	��1, . . . ,�n� , �7�

where the matrices are given in the standard z basis and we
assumed the short-time limit t1→0 for clarity. If ��k�= �+ �
for all k, this is an n-partite Greenberger-Horne-Zeilinger
�GHZ� state. The m-dependent relative phase in the above
equation restricts to generation of GHZ states with even par-
ticle number.

When multiple resonant interactions with the ancilla and
varying interaction times are allowed, a larger class of states
becomes accessible. To see which states can in principle be
prepared, we exploit the similarity of our setup to the se-
quential entanglement generation scheme analyzed in Ref.
20. There it was shown that all the matrix product states
�MPSs� of bond dimension d can be prepared if a string of
qubits interacts sequentially with a d-dimensional ancilla
system and arbitrary unitaries can be performed on ancilla
and qubit in every step.

To apply this result to the present case, the ancilla electron
and nuclear spin system together represent the control qubit:
an effective d=2 system with Hilbert space spanned for
given �I ,m� by ��I ,m ,↑� , �I ,m+1,↓�	. To see that arbitrary
unitaries are possible, note that x rotations of the control
qubit are caused by resonant interaction, while a static
Bz field causes z rotations. From these, all single-qubit
gates on the control qubit can be constructed. The
off-resonant interaction considered before performs essen-
tially a CNOT gate between the passing and the control qubit.
In the CNOT gate the “control qubit” is the control and the
passing electron is the target, in the �↑ ,↓� and �� � basis,
respectively. Combined with single-qubit gates �on the pass-
ing electron�, this seems to be enough to allow for arbitrary
transformations on the coupled control-target system. How-
ever, the situation is more complicated since the effective
gate performed by the off-resonant interaction differs for
even and odd parities of the control qubit, namely, V���
=e�−1�mi��/4�zx,1

m CNOT1→2x,1
m . I.e., not only there is, as seen

(

(

(

)

)

)

FIG. 1. �Color online� Left: Sketch of the protocol. �a� The
z-polarized “control electron” interacts resonantly with the nuclear
spin bath. �b� A sequence of x-polarized electrons interacts off-
resonantly with the bath. �c� The control electron interacts reso-
nantly again and is then measured in the z basis. Right: Time de-
pendence of overlap F with Bell state �	−�= ��++�− �−−�� /�2 �solid
blue line� for N=103. The dashed red line shows the probability P
for a ↓ measurement.
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before, a parity-dependent phase but also whether logical-0
or logical-1 controls the bit flip in the passing qubit depends
on the parity of m. One way to remove this m-dependence
and enable the generation of arbitrary states is to perform an
“Iz parity measurement” by sending an electron �+ � into the
dot, and then measure it in the �� � basis after off-resonant
interaction for a time �. Depending on the outcome, either
the odd or the even states are projected out. Remarkably,
gaining this single bit of information about the
2N-dimensional bath then allows us to remove all
m-dependences and perform clean CNOT gates. Hence the
interactions outlined above are sufficient to prepare all d=2
MPSs with high fidelity. If the passing electrons can be
brought into interaction with the ancilla again at any time,
arbitrary two-qubit gates can be performed, which implies
that all matrix product states with two-dimensional bonds
can be sequentially created.20

Direct resonant interactions lead to very low-fidelity x ro-
tations due to averaging over the different subspaces, indi-
cating that prior measurement21–23 or cooling24 of the spin
bath might be necessary. More sophisticated control
schemes, however, allow for near-unit-fidelity single-qubit
rotations with no prior preparation: In Ref. 25 it was proven
that high-fidelity arbitrary single-qubit gates can be effected
by a Hamiltonian H=�z+��x cos 	+y sin 	�, when
only the parameter 	 can be controlled precisely. For � and
� it is sufficient to know that they are nonzero for some
value of a controllable external parameter and zero for an-
other. In our situation we have the three Hamiltonians H1

=�z=B�Iz /2 �nuclear Zeeman�, H2= A
2N ��m+1 /2�z

+�I,mx� �resonant HF�, and H3= A
2N ���B̃+m+1 /2�

+ B̃�I / ��Bg���z �off-resonant HF� at hand. The Pauli matri-
ces act on the control qubit, �I is the nuclear magnetic mo-
ment, and �I,m=�I�I+1�−m�m+1�. The plus and minus signs
for H3 can be effected through spin flips of the passing elec-
tron �recall that xe

iHtx=eixHxt and xzx=−z�. These
Hamiltonians can be switched on and off �adiabatically26� at
will. Appropriate iterations of evolutions can lead to effec-
tive Hamiltonians of weighted sums and commutators of
H1,2,3. In particular, the subspace independence of the param-
eter ��B allows for generation of any weighted sum of x
and y with the weights being �I ,m� independent, thus mak-
ing the results of Ref. 25 applicable. We have thus shown
that while naive use of resonant interactions will lead to poor
gate fidelities for the control qubit, enhanced control
schemes still allow for full access to high-fidelity rotations.
Hence, in principle, universal quantum computation on an
electron spin quantum register can be performed, with all
interactions mediated by the highly mixed spin bath.

IV. EXPERIMENTAL FEASIBILITY

We discuss now various couplings that have been ne-
glected in the idealized Hamiltonian �1� but are present in the
QD setup. We are concerned here only with their effects on
the basic entanglement generation scheme. It is clear that the
scheme can only work as long as it is fast compared to the
electron T2 time, since the coherence of the ancilla electron

must be preserved. We see below that neither nuclear dynam-
ics nor inhomogeneity place more stringent conditions on
our scheme.

A. Inhomogeneity

The HF Hamiltonian in QDs has a slightly different form
from the one in Eq. �1�, because the collective bath operators
have a spatial dependence A /NI�→A���i�iIi

�, with
�= � ,z. The coupling constants �i are ��I,i��e�ri��2, with
��e�ri��2 being the probability of finding the electron at loca-
tion ri, and A=� j� j denotes now the effective �average� hy-
perfine coupling strength. We focus our analysis on short
resonant interaction times �t1
�N /A. The electronic state
after the above protocol conditioned on a ↓ measurement is
proportional to

�
�,��


���A+ei�1
z+2

z �Azt2 + ei�1
z+2

z �Azt2A+����+ +� � H.c.,

where the Pauli matrices act on the off-resonant electrons
and ���= �i1¯ iN� and ����= �i1�¯ iN� � label the orthonormal
basis of Ij

z eigenstates. Evaluating the matrix elements and
introducing the normalization, we get

��t2� =
1

N�t2��j

� j
2 �

i1,. . .,iN=�1/2
ij=−1/2

��+0+0� + �− j− j�� � H.c., �8�

with the states �+0�t2��=ei�0t2/2�↑ �+e−i�0t2/2�↓ � and �− j�t2��
=ei�jt2/2�↑ �+e−i�jt2/2�↓ �, both of which depend on the nuclear
spin configuration �i	 via the frequencies �0=�0��i	�
=����i� and � j =�0+� j and the normalization N�t2�
=� j� j

2�3+cos�� jt2��. The time dependence of the states has
been omitted for brevity in the above formula. Straightfor-
wardly, one now determines the fidelity F�t2�= 
	−���t2��	−�
with the desired maximally entangled state �	−���+0+0�
+ �−0−0� as

F�t2� = 2 � � j
2��

j

� j
2�3 + cos�� jt2�� . �9�

This expression readily gives the fidelity for arbitrary par-
ticle numbers and arbitrary distributions of coupling con-
stants. For N�1, the obtained value is independent of par-
ticle number, and for the relevant situation of Gaussian
coupling F=0.90, 0.83, and 0.78 for one dimension, two
dimensions, and three dimensions, respectively. Including
the difference in magnetic moments for Ga and As �75As:
�I,As=1.44; 69Ga: �I,Ga,1=2.02 �60%�; and 71Ga: �I,Ga,2
=2.56 �40%� �Ref. 7��, these values become F=0.83, 0.78,
and 0.74, indicating that our scheme is not compromised by
realistic inhomogeneities.

For small inhomogeneity we find the optimal time t2
�opt� by

setting the time derivative of F zero and expanding the equa-
tion in terms of the deviations � j =� j −��, where ��

=� / t2
�opt�. Going to second order in the small parameters

� j /��, the ensuing quadratic equation yields ��

=�1�5−�1+24�1−�2 /�1
2�� /4, with �x= 1

N� j� j
x. Plugging

t2
�opt� back into Eq. �9� and keeping terms up to second order,

we find F�� /���=1− �
2N� j�� j /���2.
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B. Nuclear Zeeman energies

For the times considered, nuclear Zeeman energies lead to
an important relative phase Bz�I,jt2 for each of the two terms
in the sum of the conditional state given in Eq. �8�. Consid-
ering one homogeneously coupled species of nuclear spins,
the state of Eq. �6� will have an additional m-dependent
phase. In each invariant subspace this produces an overall
phase �Bz�It2m and a relative phase �Bz�It2 between the
two parts of the superposition. This might not seem harmful,
but due to the parity effect, the sign of the phase depends on
the parity of m. Since this phase is of order �, it could spoil
the protocol. However, by simply waiting for an appropriate
time tp after each of the n electrons has passed, the total
relevant phase is �−1�mnBz�I�t2+ tp�; with tp+ t2 an integer
multiple of � / ��IBz�, it is again m independent. By the same
procedure, the nuclear Zeeman related phase can be removed
for single-species inhomogeneous systems.

For systems with strongly varying nuclear magnetic mo-
ments �I,j, the relative phase depends on “which nuclear spin
has flipped” and the waiting time needs to be chosen such
that all the relative phases are close to 2k�. Otherwise the
final fidelity may be strongly degraded. For the three species
in GaAs this is the case, e.g., for Bz�t2+ tp��7�, and assum-
ing that a flat wave function still allows for a fidelity �0.9
with moderate overhead in time. In principle, one can com-
pletely cancel the undesired phase by removing the electrons
from the QD and reversing the magnetic field for tp= t2.

C. Bath dynamics

The major internal dynamics of nuclear spins in QDs
stems from the indirect hyperfine mediated interaction and
the direct dipolar interaction.6,8 Both mechanisms lead to
bilocal errors that contain spin-flip terms ���d

kl+�i
kl�Ik

+Il
− and

phase changing zz terms ��d
klIk

zIl
z. The transition rates for

direct and indirect interactions are �dd /rkl
3 and �i� j /�e, re-

spectively, where �e is the electron Zeeman energy and rkl
= �rk−rl�.

The dephasing interactions �Ii
zIj

z lead to a relative phase
between the terms in Eq. �8�, similar to the nuclear Zeeman
energies. The energy difference, i.e., �in a mean-field treat-
ment� the Zeeman splitting of a single nuclear spin in the
field of its neighbors, is a few times �dd.24 Thus we need
N�dd / �r0

3A�
1; given �dd /r0
3�0.1 ms �Ref. 7� for nearest

neighbors and A�40 ps, this condition is readily fulfilled
even for large dots.

We have seen above that for each term in the mixed state,
the qubits rotate on the equatorial plane of the Bloch sphere
with frequencies � j when the jth nuclear spin has been
flipped. If this particular spin is involved in a spin flip due to
bath dynamics, the resulting rotation with “wrong” fre-
quency spoils the entanglement. The errors in the rotation
angle for the term containing the flip of the jth spin are �d,i

j

=��k��d,i
kj t�2�� j −�k�2�t2

opt�2, and the final overall errors are
� j� j

2�d,i
j /� j� j

2. We evaluate the above sums in the continuum
limit for Gaussian couplings and get for the indirect flips a
total error of �i�

2A�3
2 / ��4

2��, where �i is determined by the
integrals over the coupling constants. Taking A /��1 for the
large ��1 T� fields that we require, we find errors of 2.4%,

2.0%, and 1.5% for one dimension, two dimensions, and
three dimensions, respectively, for N=104 �we define N here
as the number of nuclei within the 1 / �2e� width of the
Gaussian�. For the direct nuclear dipole-dipole transitions,
the error is of size �d�2�3

2�dd / �Ar0
3�4

2�, where numerical
evaluation of the “dipolar integrals” �d yields 0.01%, 0.8%,
and 5% for the same situation as above. This overall error is
thus on the order of a few percent for realistic situations.

D. Storage

We implicitly assumed the possibility of storing the elec-
trons protected from any bath. In QD structures this could be
achieved by shuttling the electrons to a nuclear spin-free re-
gion or employing dynamical decoupling schemes; see, for
example, Ref. 6. The required storage times of a few tens of
microseconds should be readily achieved.

E. Imperfect electronic operations

A finite probability that an up electron is wrongly detected
as a down electron �or vice versa� degrades the final en-
tanglement. However, as only one electron needs to be mea-
sured, the effect is no worse for the n-partite GHZ state than
for the Bell state ��+�. The same goes for variations in the
resonant interaction time t1. In contrast, errors in the electron
preparation and variations in the off-resonant interaction
time t2, since they affect each of the n electrons, lead to a
fidelity reduction that scales exponentially with n. Variations

in t2 must be such that B̃�t2
1, with B̃�A /�N, which
makes this the most stringent but still realistic27,28 require-
ment for electron timing.

V. SUMMARY AND CONCLUSIONS

We have considered the Heisenberg interaction of electron
spin qubits with a long-lived spin bath in a situation where
nothing is known about the state of the bath. We have shown
that nevertheless high-fidelity multipartite entanglement can
be created via this bath.

The qubits interact neither directly with each other nor
simultaneously with the bath at any time. Our protocol thus
demonstrates that even the interaction with infinite tempera-
ture systems can mediate highly coherent operations and thus
represent a valuable resource for quantum information pro-
cessing that merits further investigation. In fact, when only
one bit of information is extracted from the spin bath, arbi-
trary gates between the bath and the qubits are possible, and
all matrix product states with two-dimensional bonds can be
created by sequential interaction. The explicit protocols we
presented can be realized in quantum dot setups and would
�in typical GaAs dots� allow for the creation of entanglement
between two electrons on a time scale of a few microsec-
onds.
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